
Development of Path Planning Simulation
Software for Mobile Robots

Team Based Online Project (TOP) @ Comtel
Dec 2020 to Jan 2021

Team Number 2

Sawant Anand
U.I.E.T, Punjab Univ.
Chandigarh
sawantanand310@gmail.com

Soumya Ghosh
NIT Durgapur
Durgapur
soumya0341@gmail.com

Bharat Dadwaria
JNU Delhi
New Delhi
bkd0385@gmail.com

Rajeevlochana G Chittawadigi
Amrita Vishwa Vidyapeetham
Bengaluru
rg_chittawadigi@blr.amrita.edu

Contents

• Introduction

• Objectives

• Flowchart

• Literature Review-Mazes Algorithms

• Logic of Maze Generation

• Logic of Maze Solution

• Video of Demonstration

• Social Implication

• Conclusion

• References

Introduction

Mobile robots are used for various
applications such as:

• Movement of material

• Scanning of rooms or regions, etc.

Before developing a physical
prototype of a mobile robot, it is
important to simulate the motion of
the robot for any given application.

Micromouse Competition at
IIT Bombay (TechFest)

Objectives

• Develop a simulation environment that can be used to perform path
planning of wheeled mobile robots, assuming no slippage for
simpler implementation.

• Develop an algorithm for random maze generation using turtlebot
and python coding

• Develop an algorithm to traverse the generated maze using
turtlebot and python coding using left hand wall following algorithm.

Literature Review-Mazes Algorithms

•Types of Solver based on view:
•There are two types of solver based on view:

• The random mouse, wall follower, Pledge, and Trémaux's
algorithms are designed to be used inside the maze by a traveller
with no prior knowledge of the maze

• The dead-end filling and shortest path algorithms are designed to
be used by a person or computer program that can see the
whole maze at once.

Popular Algorithms:

• Wall Follower

• Pledge Algorithm

• Trémaux's Algorithm

• Dead-end filling

• Recursive Algorithm

• Maze-Routing Algorithm

• Shortest path algorithm

• Backtracking Algorithm

Our Implementation

• Python Programming Language

• https://trinket.io/python/
• Online Compiler

• Turtle programming
• Easy to draw lines and animate motion

https://trinket.io/python/

Sample Program

Maze Generation Program

• The maze is generated in 3 Distinct Steps:

• First, given the size of the maze, walls of the maze
using solid lines is created.

• Second, using left-&-right motion, horizontal inner walls
of the maze are generated, using a random function to
generate a cell wall(0) or space(1)

• Third, using up-&-down motion, vertical inner walls of
the maze are generated, using a random function to
generate a cell wall(0) or space(1)

• Data of the walls are stored in two 2-D matrices in the
binary form, where 1=Space and 0=Wall

• Disadvantages: This Algorithm may create a solvable or
unsolvable maze

Maze Generation Program

• The maze is generated in 3 Distinct Steps:

• First, given the size of the maze, walls of the maze using
solid lines is created.

• Second, using left-&-right motion, horizontal inner
walls of the maze are generated, using a random
function to generate a cell wall(0) or space(1)

• Third, using up-&-down motion, vertical inner walls of
the maze are generated, using a random function to
generate a cell wall(0) or space(1)

• Data of the walls are stored in two 2-D matrices in the
binary form, where 1=Space and 0=Wall

• Disadvantages: This Algorithm may create a solvable or
unsolvable maze

Maze Generation Program

• The maze is generated in 3 Distinct Steps:

• First, given the size of the maze, walls of the maze using
solid lines is created.

• Second, using left-&-right motion, horizontal inner walls
of the maze are generated, using a random function to
generate a cell wall(0) or space(1)

• Third, using up-&-down motion, vertical inner walls of
the maze are generated, using a random function to
generate a cell wall(0) or space(1)

• Data of the walls are stored in two 2-D matrices in the
binary form, where 1=Space and 0=Wall

• Disadvantages: This Algorithm may create a solvable or
unsolvable maze

Maze Generation Program

• The maze is generated in 3 Distinct Steps:

• First, given the size of the maze, walls of the maze using
solid lines is created.

• Second, using left-&-right motion, horizontal inner walls
of the maze are generated, using a random function to
generate a cell wall(0) or space(1)

• Third, using up-&-down motion, vertical inner walls of
the maze are generated, using a random function to
generate a cell wall(0) or space(1)

• Data of the walls are stored in two 2-D matrices in the
binary form, where 1=Space and 0=Wall

• Disadvantages: This Algorithm may create a solvable or
unsolvable maze

Maze Generation Program

• The maze is generated in 3 Distinct Steps:

• First, given the size of the maze, walls of the maze using
solid lines is created.

• Second, using left-&-right motion, horizontal inner walls
of the maze are generated, using a random function to
generate a cell wall(0) or space(1)

• Third, using up-&-down motion, vertical inner walls of
the maze are generated, using a random function to
generate a cell wall(0) or space(1)

• Data of the walls are stored in two 2-D matrices in the
binary form, where 1=Space and 0=Wall

• Disadvantages: This Algorithm may create a solvable or
unsolvable maze

Maze Solving Logic: Left Wall Follower

• Here, the bot starts from bottom-left corner and tries to reach top-right corner.

• The maze is viewed as a grid with 4 walls/spaces depending on the orientation of the bot :
left, right, front, back.

• The bot checks the data of the current cell-walls and makes the a decision based on the
following conditions:
• It will try to keep a wall on left.

• If in a cell, there is no left wall, it will turn left and move 1 cell forward

• Else-If it has front & left wall only, then it will turn right and move 1 cell forward

• Else-If, it has front, left & right wall, then it will turn around (180) and move 1 cell forward

• Else,(only left wall) then it will move 1 cell forward

• Either it will reach the destination cell, or rotate the maze in a loop.

Video of Demonstration

Reference

• Books and Websites on Python programming

